

Laser Frequency Stabilization for GRACE-2

William Folkner JPL

23-June-2011

Earth Science Technology Forum

Acknowledgements

- Co-Is:
 - -W. Klipstein, N. Yu (JPL), M. Stephens, J. Leitch (BATC)
- Collaborators:
 - Science advisors: M. Watkins (JPL), R. Nerem, P. Bender (CU)
 - -Laser advisors: K. Danzmann, G. Heinzel (U. Hannover)
- Cavity/enclosure development
 - -J. Decino, R. Pierce, C. Pace, M. Davis (BATC)
- Modulators/electronics
 - -R. Thompson, J. Dickson, S. Esterhuizen, G. deVine, K. McKenzie,
 - D. Wuchenich, R. Spero (JPL)
- Sponsor
 - NASA Earth Science Technology Office / Instrument Incubator Program

GRACE Mission

Science Goals

High resolution, mean & time variable gravity field mapping for Earth System Science applications.

Mission Systems

Instruments

- KBR (JPL/SSL)
- •ACC (ONERA)
- ·SCA (DTU)
- •GPS (JPL)

Satellite (JPL/DSS)
Launcher (DLR/Eurockot)
Operations (DLR/GSOC)
Science (CSR/JPL/GFZ)

Orbit

Launch: March 2002 Altitude: 485 km Inclination: 89 deg Eccentricity: ~0.001 Lifetime: 5 years

Non-Repeat Ground Track Earth Pointed, 3-Axis Stable

GRACE Measurement Concept

- Earth gravity features affect lead/trailing spacecraft at different times
 - Lead spacecraft encounters feature first
 - e.g. lead spacecraft speeds up towards mountain
 - Range to trailing spacecraft increases
 - Any unknown non-gravity forces acting on spacecraft also affect range
 - Calibrated out using accelerometer or drag-free sensor system

Ranging Measurement Methods

- Range is determined by round-trip light time
 - Pulsed light is used in SLR/LLR where photon rates are low
 - Coherent signals allow use of phase delay for higher accuracy
 - Range ambiguity by integer number of wavelengths can be resolved with modulation if required

Dual-one-way versus Transponding

- GRACE uses independent transmission/detection at each spacecraft
 - Combination of data on ground determines range
- Laser ranging will lock laser to frequency reference on one spacecraft and lock laser to received laser on seconds s/c
 - Otherwise laser frequencies would be too far apart
 - Fast phase meter needed for locking function

Microwave and Laser Ranging Sensitivity

Microwave Ranging System Noise

Laser Ranging System Noise

Optical Cavity Frequency Reference

- Stabilize laser frequency by locking wavelength to thermally stable optical cavity
 - ULE glass has ultra-low thermalexpansion coefficient
 - Isolate from external temperature fluctuations

Cavity Mount Design

- Cavity is mounted using flexures bonded to cavity central ring
 - -Flexure material (Ti) and stiffne chosen to provide support and maintain alignment for launch and minimize thermo-elastic effects on cavity
- Optics for injecting laser light into cavity via fiber are also mounted using flexures

Thermal Isolation Enclosure

- Two concentric shells surround the cavity and optics to isolate them from external thermal
- Size and mass of laser frequency stabilization subsystem has been iterated with GRACE spacecraft team to ensure compatibility
- Inner shell forms a vacuum enclosure to avoid gas pressure fluctuations and contamination
 - Vacuum gauge and valve included for development will be replaced with vent-to-space actuator for flight

Laser Locking to Optical Cavity

- Laser locked to cavity using Pound-Drever-Hall technique
 - Light resonance occurs when cavity length is integer number of wavelengths
 - Laser frequency stability is directly related to stability of length of cavity
 - Cavity is made of material with low thermal expansion coefficient
 - Light exiting cavity compared with light entering cavity
 - Requires electro-optical modulator to add phase-modulation to laser beam
 - Difference in modulation signal gives laser correction to match cavity

Tunable Laser

- Non-planar ring oscillator
 (NPRO) Nd:YAG laser provides tunability for locking to cavity
 - Laser wavelength adjusted by changing dimensions of YAG crystal using PZT glued to crystal and thermal adjustment
- Space-qualified NPRO laser available from Tesat Spacecom

Laser pump diode assembly

Electro-Optical Modulator

- Several companies make EOM suitable for use in space
- Selected unit from Photline has inexpensive laboratory model traceable to flight model
 - Tested to show meets locking requirements

Selected electro-optical modulator

Breadboard Locking Electronics

- Commercial FPGA
 evaluation board used for
 development and testing of
 laser locking algorithms
 - ADC for sampling interference signal from photodiode
 - DACs used to adjust laser crystal frequency via PZT and temperature

Subsystem Performance Results

Frequency stability measured with cavity in simulated spacecraft thermal environment Interior panel temperature variation +/- 1°C

Environmental Test Results

- Breadboard cavity thermal tests showed a slight misalignment occurred at highest temperatures
 - Traced to adhesive glass transition at 50C
- Prototype cavity assembled is improved processes
 - Successfully passed thermal and vibration tests
- Cavity assembly is at TRL-6
- EOM thermal test passes, vibration test pending
- Electronics prototype still in assembly

Future Plans

- Prototype electronics are in final assembly
 - Performance and environmental tests planned to establish TRL-6
- Functional system-level test planned with inter-spacecraft optics from IIP-02
- GRACE-FO project started June 2011 with laser ranging included as technology demonstration
 - Will include cavity and electronics developed under IIP-07
 - Cavity enclosure needs to be slightly modified to fit allocated volume
 - Optical benches, beam steering mirror and routing optics to be provided by Germany
 - Beam steering and initial acquisition are major system-level challenges remaining

GRACE Spacecraft

SuperSTAR Accelerometer

ONERA

Racetrack Configuration

Lateral Transfer Hollow RetroreflectorTM

IRT Optical Bench

